
Dual-Purpose Hardware Algorithms and Architectures – Part 2: Integer Division

Jihee Seo1,2 and Dae Hyun Kim2

1Synopsys, Inc., Hillsboro, OR, USA
2School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

jiheeseo@synopsys.com, daehyun.kim@wsu.edu

Abstract—Integer division is different from floating-point divi-
sion in that (1) the execution time of an integer division is highly
dependent on the leading 1 locations of operands, (2) x and
−x have different magnitude parts if x is a two’s complement
integer, and (3) rounding is not necessary. In this paper, we
apply the interval-analysis-based division algorithm proposed in
“Dual-Purpose Hardware Algorithms and Architecture – Part 1:
Floating-Point Division” [1] to offline and online integer division.
We implement four online integer dividers using the algorithm,
compare them with other dividers, and present detailed simula-
tion results with in-depth analysis of the dividers. We find that the
online dividers outperform the offline dividers when the waiting
time for online operands goes up and the number of quotient
bits to obtain goes down.

Index Terms—Divider; Integer Arithmetic; Online Division;

I. INTRODUCTION

Division is one of the most commonly-used arithmetic

operations, so researchers have proposed efficient algorithms

for high-performance division [2]–[6]. Most of them aim for

offline division, whereas some division algorithms have been

proposed for online division [7]–[13]. In the paper “Dual-

Purpose Hardware Algorithms and Architectures – Part 1:

Floating-Point Division”, a companion to this paper, we have

proposed a dual-purpose (offline and online) algorithm for

floating-point division. The algorithm works as an offline

algorithm if both the dividend and the divisor are fully given

at cycle 0. On the contrary, if one or both of the operands

are partially given at cycle 0 and additionally given later, the

algorithm works as an online algorithm and starts generating

quotient digits before receiving all the digits of the operands.

Digit-recurrence integer and floating-point division algo-

rithms are generally based on the same or similar principles.

However, the execution time of an integer division varies

depending on the leading 1 locations of operands. In addition,

for a nonzero integer x, the magnitude parts of x and −x are

different in the two’s complement representation. Moreover,

integer division does not need rounding and normalization.

In this paper, we apply the dual-purpose hardware algorithm

to integer division and propose hardware architectures for that.

Our contributions in this paper are as follows:

• The division algorithm we propose uses the conventional

non-redundant binary (normal binary) number system, so

it does not require hardware for the conversion between

redundant and non-redundant binary number systems.

• The algorithm and the hardware architectures can be used

for both offline and online division.

• For online division, the division algorithm fully utilizes

all the given dividend bits. In addition, if the divisor of a

division is fully given at cycle 0, the division algorithm

fully utilizes the divisor. These two features help reduce

the execution time significantly.

• The online division algorithm can be used for signed

integers with a slight modification.

The rest of this paper is organized as follows. In Section II, we

review the digit-recurrence-based division algorithm for un-

signed integers and present an equivalent form of the algorithm

using interval analysis. In Section III, we explain interval-

analysis-based normal-binary online division algorithms for

unsigned and signed integers. Section IV shows hardware

implementation of the algorithms. We compare several offline

and online dividers in Section V and conclude in Section VI.

II. NORMAL-BINARY OFFLINE DIVISION

In this section, we briefly review the non-restoring offline

division algorithm for unsigned integer division. More details

can be found in [1], [14].

A. Offline Normal-Binary Unsigned Integer Division

For x = d·q+rem where x, d, q, and rem are the dividend,
the divisor, the quotient, and the remainder of the unsigned
integer division, respectively, it should satisfy the following:

0 ≤ rem < d. (1)

The quotient obtained until iteration j is as follows:

q[j] = qn−1qn−2 · · · qn−j =

n−1
∑

i=n−j

qi · r
i, (2)

where qi ∈ {0, 1, · · · , r − 1}.
For x = d · q+ rem, q[j] should satisfy the following [14]:

0 ≤ x− d · q[j] < d · rn−j ⇔ 0 ≤ rj−n · (x− d · q[j]) < d. (3)

Similarly, q[j + 1] should satisfy the folowing:

0 ≤ rj+1−n · (x− d · q[j + 1]) < d

⇔ 0 ≤ rj+1−n · (x− d · q[j])− d · qn−j−1 < d. (4)

Define w[j] as w[j] = rj−n · (x−d · q[j]). Then, qn−j−1 = k
if the following is satisfied:

k · d ≤ r · w[j] < (k + 1) · d. (5)

B. Interval-Analysis-Based Offline Division

For x = d · q + rem, suppose we have obtained q[j] =
qn−1 · · · qn−j . This means that x/d satisfies the following:

q[j] ≤
x

d
< q[j] + rn−j . (6)

In this case, qn−j−1 = k if the following condition is satisfied:

q[j] + k · rn−j−1 ≤
x

d
< q[j] + (k + 1) · rn−j−1. (7)

For example, suppose n = 4, r = 2, x = 14, d = 2, j = 2,

so q[2] = 01002 = 410 in which q1q0 is set to 00. In this

case, q1 = 0 if 4 + 0 · 21 ≤ x/d < 1 + 2 · 21 and q1 = 1 if

4 + 1 · 21 ≤ x/d < 4 + 2 · 21.

Rearranging the terms in (7) leads to (5), which means the

quotient digit selection based on interval analysis in (7) is

equivalent to the digit-recurrence division algorithm in (5).

C. Dependency on the Leading 1 Locations of the

Operands (Speed-Up Technique)

Suppose x and d are given and let the locations (indices)
of the leading 1 bits of x and d are lx and ld, respectively.
If lx ≤ ld, then q is 0 or 1. If lx > ld, some of the most
significant bits (MSBs) of q are 0 as follows:

2lx−ld−1 =
2lx

2ld+1
<

x

d
<

2lx+1

2ld
= 2lx−ld+1. (8)

Thus, qn−1 · · · qlx−ld+1 is 0 · · · 0. In this case, we can start

the division from qlx−ld , which is a well-known technique.

III. NORMAL-BINARY ONLINE DIVISION

In this section, we propose an interval-analysis-based nor-

mal binary online division algorithm. More details can be

found in [1].

A. Normal-Binary Unsigned Integer Online Division

For x = d · q + rem, suppose two unsigned integers x and
d are partially given from the MSBs until iteration j and we
have obtained q from them as follows:

x[j] = xn−1xn−2 · · ·xa[j](0 · · · 0) =

a[j]
∑

i=0

xi · r
i, (9)

d[j] = dn−1dn−2 · · · db[j](0 · · · 0) =

b[j]
∑

i=0

di · r
i, (10)

q[j] = qn−1qn−2 · · · qc[j](0 · · · 0) =

c[j]
∑

i=0

qi · r
i, (11)

where a[j] and b[j] are the indices of the rightmost digits of
x and d given until iteration j, respectively, and c[j] is the
index of the rightmost digit of q obtained until iteration j. We
also show 0’s in the parentheses for the ungiven digits of x
and d. The range of x/d is as follows:

[(x

d

)

MIN
=

x[j]

d[j] + rb[j] − 1
,
(x

d

)

MAX
=

x[j] + ra[j] − 1

d[j]

]

. (12)

In this case, qc[j]−1 = k if the following is satisfied as shown
in Fig. 1(a):

q[j] + k · rc[j]−1 ≤
(x

d

)

MIN
, (13)

(x

d

)

MAX
< q[j] + (k + 1) · rc[j]−1. (14)

However, notice that (x/d)MIN and (x/d)MAX might not fall

into the same sub-range as shown in Fig. 1(b). In this case,

we need more digits of x and/or d to find qc[j]−1.
We rewrite (13) as follows:

0 ≤ x[j]− (q[j] + k · rc[j]−1) · (d[j] + rb[j] − 1). (15)

Similarly, we rewrite (14) as follows:

x[j] + ra[j] − 1− d[j] · (q[j] + (k + 1) · rc[j]−1) < 0. (16)

)[

q[j]

x

d

q[j]+r rc[j]-1

)[

qc[j]-1=k...

[)

q[j]+k rc[j]-1

)[)[

q[j]+(k+1) rc[j]-1

(a)

x

d)(
min

x

d)(
max

)[

q[j]

x

d
)[

qc[j]-1=undecided...

[))[)[(b)

x

d)(
min

x

d)(
max

. . .

q[j]+r rc[j]-1q[j]+k rc[j]-1 q[j]+(k+1) rc[j]-1. . .

Fig. 1. Interval-analysis-based unsigned integer online division

Evaluation of (15) and (16) requires shifted versions of q[j]
and d[j], and d[j]·q[j]. Since the multiplication of d[j] and q[j]
is costly and cannot be completed in a cycle, we incrementally

update d[j] · q[j] as follows. If m[i, j] = (
∑n−1

p=n−i dp · rp) ·

(
∑n−1

p=n−j qp · r
p), then the following holds:

m[i+ w, j + t] = m[i, j] + (

n−i−1
∑

p=n−i−w

dp · rp) · (

n−1
∑

p=n−j

qp · rp)

+(

n−1
∑

p=n−i−w

dp · rp) · (

n−j−1
∑

p=n−j−t

qp · rp). (17)

The details of when the incremental update is executed is

shown in Section IV.

B. Example: Radix-4 Online Division

Suppose n = 4, r = 4, x = 33204, and d = 00314. We also

assume that one digits of x and d are given every clock cycle

starting from the MSBs.

At cycle 1, x3 = 3 and d3 = 0 are given. Applying (15) and

(16) for k = 0, 1, 2, 3 leads to (true, false) for k = 0 and (false,

false) for the others, so we cannot find q3. At cycle 2, x2 = 3
and d2 = 0 are given. None of k = 0, 1, 2, 3 satisfies (15) and

(16) at the same time.

At cycle 3, x1 = 2 and d1 = 3 are given. Applying (15)

and (16) for k = 0, 1, 2, 3 leads to (true, true) for k = 0 and

(false, true) for the others. As a result, q3 = 0. At cycle 4,

x0 = 0 and d0 = 1 are given. Only k = 0 satisfies both (15)

and (16), so q2 = 1.

Since all the digits of x and d have been given, we can

certainly obtain q1 in the next cycle. At cycle 5, applying the

inequalities leads to (true, true) only for k = 0, so q1 = 0.

At cycle 6, the evaluation of the inequalities results in (true,

false) for k = 0, 1, 2 and (true, true) for k = 3, so q0 = 3.

x/d = 33204/00314 = 24810/1310 = 1910 = 01034, so the

answer is correct.

C. Online Division with Offline Operands

Suppose x and d are fully given at cycle 0. In this case,
a[j] = 0 and b[j] = 0 for all j and c[j] = n − j in (9)–(11).
Then, we can rewrite (15) as follows:

k · d ≤ r · {r−c[j] · (x− d · q[j])}, (18)

which is equivalent to the left side of (5). Similarly, we can
rewrite (16) as follows:

r · {r−c[j] · (x− d · q[j])} < (k + 1) · d, (19)

TABLE I
AN EXAMPLE OF THE ONLINE DIVISION ALGORITHM. n = 4, r = 4,

x = 33204 , AND d = 00314 . WE ASSUME THAT ONE DIGITS OF x AND d
ARE GIVEN EVERY CLOCK CYCLE.

Cycle x d q

0 XXXX4 XXXX4 XXXX4

1
3XXX4 0XXX4 XXXX4

Apply (15) and (16). k = 0 (true, false), k = 1 (false, false),

k = 2 (false, false), k = 3 (false, false),

2
33XX4 00XX4 XXXX4

Apply (15) and (16). k = 0 (true, false), k = 1 (false, false),

k = 2 (false, false), k = 3 (false, false),

3
332X4 003X4 XXXX4

Apply (15) and (16). k = 0 (true, true), k = 1 (false, true),

k = 2 (false, true), k = 3 (false, true) ⇒ q = 0XXX4

4
33204 00314 0XXX4

Apply (15) and (16). k = 0 (true, false), k = 1 (true, true),

k = 2 (false, true), k = 3 (false, true) ⇒ q = 01XX4

5
33204 00314 01XX4

Apply (15) and (16). k = 0 (true, true), k = 1 (false, true),

k = 2 (false, true), k = 3 (false, true) ⇒ q = 010X4

6
33204 00314 010X4

Apply (15) and (16). k = 0 (true, false), k = 1 (true, false),

k = 2 (true, false), k = 3 (true, true) ⇒ q = 01034

which is equivalent to the right side of (5). This proves that the

online divider will work as an offline divider (dual-purpose)

if the operands are offline (fully given at cycle 0).

D. Normal-Binary Signed Integer Online Division

In this section, we briefly show how to use the proposed
division algorithm for signed integer online division. For x =
d · q+ rem, we assume x and rem have the same sign. Then
we find the following formulas for q and rem:

q = (−1)sq ·

⌊

|x|

|d|

⌋

, (20)

rem = (−1)srem · (|x| − |q| · |d|). (21)

where sq = 0 if x · d > 0 and sq = 1 if x · d < 0, and

srem = 0 if x > 0 and srem = 1 if x < 0. Thus, signed

integer division can be completed in three steps as follows:

• Computation of |x| and |d|.
• Unsigned integer division: q′ = ⌊|x|/|d|⌋.

• Sign conversion: q = q′ if sq = 0. q = q′ if sq = 1.
For online division, we need the following modifications. If
x[j] = xn−1 · · ·xa[j] and d[j] = dn−1 · · · db[j] are given and
they are negative (i.e., xn−1 = 1, dn−1 = 1), we obtain the
following ranges for |x| and |d|:

|x|MIN : x[j] + 1, |x|MAX : x[j] + ra[j],

|d|MIN : d[j] + 1, |d|MAX : d[j] + rb[j],

where x[j] and d[j] are xn−1 · · ·xa[j]0 · · · 0 and

dn−1 · · · db[j]0 · · · 0, respectively. In this case, we use
the following inequalities for (15):

x > 0, d > 0 : (q[j] + k · rc[j]−1) × (d[j] + rb[j]−1) ≤ x[j]

x > 0, d < 0 : (q[j] + k · rc[j]−1) × (d[j] + rb[j]) ≤ x[j]

x < 0, d > 0 : (q[j] + k · rc[j]−1) × (d[j] + rb[j] − 1) ≤ x[j] + 1

x < 0, d < 0 : (q[j] + k · rc[j]−1) × (d[j] + rb[j]) ≤ x[j] + 1

We also use the following inequalities for (16):

x > 0, d > 0 : x[j] + ra[j] − 1 < (q[j] + (k + 1) · rc[j]−1) × d[j]

x > 0, d < 0 : x[j] + ra[j] − 1 < (q[j] + (k + 1) · rc[j]−1) × (d[j] + 1)

x < 0, d > 0 : (x[j] + ra[j]) < (q[j] + (k + 1) · rc[j]−1) × d[j]

x < 0, d < 0 : (x[j] + ra[j]) < (q[j] + (k + 1) · rc[j]−1) × (d[j] + 1)

IV. HARDWARE IMPLEMENTATION

In this section, we present the hardware implementation of

the n-bit radix-r online divider.

A. Design Parameters

Table II shows two design parameters for the hardware

implementation of the divider. r is the radix of the divider

and log2 r is the number of quotient bits to obtain every

cycle. In this paper, we use 4 and 16 for r. For w, suppose

d[j] = dn−1 · · · db[j] and we have m[b[j], c[j]]. In the next

cycle, suppose db[j]−1 · · · db[j]−s is additionally given (s ≥ w).

Then, we use only w digits of them (db[j]−1 · · · db[j]−w) to

update m. Increasing w will reduce the clock frequency

because the update of m in (17) will take more time. However,

it will increase the probability of finding quotient digits in a

cycle. In this paper, we use 2 and 4 for w.

B. Hardware Implementation: Overall Architecture

Fig. 2 shows the top-level architecture of the proposed

online divider. The input consists of dividend x, divisor d,

and their valid bits vx and vd sent from the senders of x and

d, respectively. For example, if only xn−1 · · ·xa[j] is valid, vx
is 1 · · · 10 · · · 0 in which there are n− a[j] 1’s and a[j] 0’s.

Path 1 detects leading 1’s in x and d. If x and/or d does not

have a leading 1, F1 is set to false and the state of the divider

stays in Path 1. If d = 0, ERR is set to true and the division

ends. If both x and d have leading 1’s, we apply the speed-up

technique and find vq,1, cq,1, and cd,1, which are passed to

vq , cq , and cd through the mux, and move on to Path 2 in

the next cycle. vq is an n-bit valid signal for q (similar to vx
and vd). cd and cq are the indices for m[cd, cq]. In Path 2, we

evaluate (15) and (16), find quotient digits, and update m, vq ,

cq , and cd, the last three of which are passed to the mux for

the use in Path 2 again in the next cycle. Table III shows the

internal registers. A state controller controls the mux in Fig. 2.

C. Hardware Implementation: Path 1

Fig. 3 shows Path 1 of the proposed divider. Fx (or Fd) is

1 if x (or d) has a leading 1 and lx (or ld) has the group index

of the leading 1, which is the bit index of the leading 1 of

x (or d) divided by log2 r. F1 is Fx ·Fd. If all the bits of d are

valid and d = 0, ERR is set to 1 indicating a divide-by-zero

error. From now on, we assume that F1 = 1 and ERR = 0.

DL is lx− ld. If DL < 0, then x < d, so we set vq to 1 · · · 1
and the division ends (q = 0). If DL ≥ 0, we apply the speed-

up technique to fill up q with leading 0’s. cq,1 is set to (DL+1)
because we have obtained qn−1 · · · qn−(log2 r)·(dL+1) (all 0’s)

by the speed-up technique.

For cd,1, we find the index t of the rightmost valid bit of d
using vd and set cd,1 to ⌈t/w⌉. Notice that we do not compute

m in Path 1 because the quotient bits we find in Path 1 are

all zero, so m is zero. Thus, we just find cq,1 and cd,1.

D. Hardware Implementation: Path 2

Path 2 consists of three steps as shown in Fig. 4.

TABLE II
DESIGN PARAMETERS AND CONSTANTS. n: DATA WIDTH.

Description

r Radix-r division (4 or 16)

w # unused bits of d used to update m (2 or 4 bits) in (17)

nr ⌈log2(n/log2 r)⌉+ 1
nw ⌈log2(n/w)⌉

x d vdvx

Path 1 (Leading 1 detection)

vq,1

F1
n

Path 2 (Ineq.)

ERR

cd,1 qvq,2 cd,2 m

MUX0 1Control

vq cd

Reg

n n n n

n n n

n

x vX d vD m q vq cd

nw nw

nw

nr

cq,1

nr

cq,2

cq

nr

cq

Fig. 2. The top-level architecture of the proposed divider for n-bit radix-r
high-throughput division. nr = ⌈log2(n/log2 r)⌉+1, nw = ⌈log2(n/w)⌉.

1) Step 1: Update m using (17).: We first find the index t
of the rightmost valid bit of d using vd and set gd to ⌈t/w⌉.

If cd − gd ≥ 1, d has at least w bits not included in m, so we

update m[w · cd, (log2 r) · cq] using (17) and decrease cd by 1.

2) Step 2: Solve (15) and (16).: We solve (15) and (16) for

k = 0, · · · , r−1. Notice that most of the terms in (15) and (16)

are shifted versions of q[j], d[j], and k, thus we use shifters for

them. For the evaluation of the inequalities, we add the terms

by carry-save adders (CSAs) and then use a carry-propagate

adder (CPA) to obtain the final sum. We also pre-compute mk

for each k using (17) to reduce the computation time.

3) Step 3: Update m using (17).: If a certain k satisfies both

(15) and (16), then we use a mux to select the pre-computed

mk for m. We also update q, vq,2, and cq,2 accordingly (shown

as “Proc. q, vq , cq” in Fig. 4). If none of the inequality sets

is true, then we do not update m, cq,2, and vq,2.

V. SIMULATION RESULTS

In this section, we present simulation results for 64-bit

unsigned integer division. We implemented all the dividers

using Verilog and synthesized them using Synopsys Design

Compiler.

A. Dividers Used for the Comparison

We compare seven offline and five online dividers for the

execution of an offline division. We include four floating-point

dividers because they can also be used for integer division with

slight modifications.

AN16 is a radix-8 floating-point divider [2]. It uses the

radix-8 digit-recurrence algorithm with a look-up table for

quotient digit selection. SA17 is a radix-16 floating-point

TABLE III
INTERNAL REGISTERS

Reg # bits Description

q n Stores the quotient.

vq n Stores the valid bits of q.

m n Stores m[p, s].
cd nw Stores the first index of m[cd, cq].
cq nr Stores the second index of m[cd, cq].

n

x

n n

d

n

vDvX

Leading 1 detector

Fx lX

nr

Fd ld

vq,1

cd,1

<<

1

n

1...1

F1

n

ERR

DL

Speed-up

nr

Reg

nw

cq,1

nr

*r

Leading 1 detector

Fig. 3. Path 1: Leading 1 detection and the speed-up technique.

divider [3]. It is based on a radix-16 digit-recurrence algo-

rithm with a wide digit set. JB20 is a radix-64 floating-point

divider [4]. It performs three radix-4 iterations to obtain six

quotient bits in a cycle. NT05-4 and NT05-16 are the radix-4

and radix-16 integer dividers, respectively, proposed in [15].

Q2 and Q4 are the radix-4 and radix-16 offline dividers,

respectively, based on (7).

AT03 is a radix-4 floating-point online divider [13]. It

unfolds radix-2 recurrence equations to obtain two quotient

bits in a cycle. QDxw are our online dividers and we call

them QD dividers below. x is log2 r, the number of quotient

bits to obtain in a cycle, and w is the number of divisor bits

used to update m using (17).

B. Offline Division

First, we compare the dividers for an offline division.

Table IV shows the clock periods, execution times, energy

consumption, and areas of the dividers. Notice that we did

not use the speed-up technique in any of the dividers for a

fair comparison.

1) Execution Time: Table IV shows the execution times

of the dividers. Q4 has the shortest execution time for an

offline division. NT05-4, NT05-16, AN16, SA17, and JB20 are

98%, 88%, 65%, 116%, and 82% slower than Q4, respectively.

Comparing Q4 and JB20, Q4 obtains four quotient bits per

cycle while JB20 obtains six quotient bits per cycle. However,

the clock period of Q4 is 49% shorter than that of JB20, so Q4

outperforms JB20 by 45%. We find similar trends in the other

designs. Q2 also outperforms all the designs except Q4. In

addition, even QD42 and QD44 outperform most of the other

TABLE IV
A COMPARISON OF THE DIVIDERS FOR A 64-BIT OFFLINE DIVISION. THE NUMBERS IN THE PARENTHESES ARE THE RATIOS OF THE RESULTS TO THE

VALUES OF THE Q2 DESIGN.

Offline dividers Online dividers

AN16 [2] SA17 [3] JB20 [4] NT05-4 [15] NT05-16 [15] Q2 Q4 AT03 [13] QD22 QD24 QD42 QD44

Radix 8 16 64 4 16 4 16 4 4 4 16 16
Clock period (ns) 0.71 1.21 1.36 0.54 1.00 0.52 0.70 0.63 0.93 0.95 1.11 1.21

Execution time (ns)
18.46 24.20 20.40 22.14 21.00 16.64 11.20 25.83 29.76 30.40 17.76 19.36

(1.11) (1.45) (1.23) (1.33) (1.26) (1.00) (0.67) (1.55) (1.79) (1.83) (1.07) (1.16)

Energy (pJ)
58.7 125.1 72.6 41.4 28.4 23.7 95.6 142.8 202.9 300.5 490.6 499.0

(2.47) (5.27) (3.06) (1.74) (1.19) (1.00) (4.03) (6.02) (8.55) (12.66) (20.67) (21.02)

Area (um2)
3,871 12,663 6,489 1,837 2,846 2,895 13,391 4,696 9,818 11,810 35,153 38,395

(1.34) (4.37) (2.24) (0.63) (0.98) (1.00) (4.63) (1.62) (3.39) (4.08) (12.14) (13.26)

f0: Ineq (15),

(16) for k=0

Find gd and update m using (17) if cd-gd≥1.Step 1

Step 2 f1: (15), (16)

for k=1
... fr-1: (15), (16)

for k=r-1

True/False

MUX
Step 3

n m0

T/F

n m1

T/F

n mr-1

n

m

n

cd,2

r

0...0

n mN

mN

100...0 010...0 00...01

Proc. q, vq, cq

q vq,2

n

x

n

d vdvx cd vqq

n n n nnw

cq m
nnr

Reg

cq,2

Fig. 4. Path 2: Evaluation of (15) and (16).

designs. On the other hand, QD22 and QD24 are slower than

the others because they need 32 cycles to finish a division.

The reason that the clock period of Q4 is only 35% longer

than that of Q2 is as follows. The most time-consuming part

in the Q2 and Q4 dividers is the calculation of (7), which

is composed of several CSA and a CPA stages. However,

obtaining two more quotient bits per cycle in Q4 compared

to Q2 requires adding two more 64-bit operands in (7), which

increases the critical path delay only by one CSA delay. Q4

also uses 16:1 muxes (compared to 4:1 muxes in Q2), so its

critical path delay is 0.18ns longer than that of Q2. However,

Q4 spends only 16 cycles, whereas Q2 spends 32 cycles for

the division. As a result, the execution time of Q4 is 33%

shorter than that of Q2. The four QD designs have longer

clock periods than Q4 because they have more complex logic

and CSA stages for the computation of (15) and (16).
The following shows the critical path delays of Q4 and

QD44.

Q4 : 3 CSAs (290ps) + CPA (200ps) + 4 : 1 MUX (210ps)

QD44 : Ext D (230ps) + 5 CSAs (440ps) + CPA (180ps)

+16 : 1 MUX (360ps)

where “Ext D” extracts four new bits in the divisor.

2) Energy Consumption and Area: Although Q4 shows the

shortest execution time, it consumes more energy than some

of the other designs. For example, Q4 consumes 63% more

energy than AN16. On the other hand, Q2 consumes the least

amount of energy among them. The reason that Q4 consumes

much more energy than Q2 is that Q4 evaluates 15 inequalities

whereas Q2 evaluates only three inequalities. For the same

reason, the area of Q4 is 4.63× as large as that of Q2. The

four QD dividers consume even more energy and silicon area

than Q4 because the QD dividers need additional hardware

resources to update m, add more operands in the CSA stages

for the inequality evaluation, and compute more inequalities.

Fig. 5 shows normalized area vs. normalized execution time

of the dividers for an offline division. Both the area and

execution time values are normalized to the Q2 design.

C. Online Division

Now we compare the integer dividers for online division.

We do not include the NT05 designs because Q2 and Q4 have

shorter execution time than NT05. Q2 and Q4 cannot process

incomplete operands, so if an online division is given, they

should wait until the operands are fully given.

1) Simulation Methodology: A target divider is the divider

computing an online division. An online operand is generated

in a generator and sent to the target divider starting from the

MSB. Any unit could be used for the generator, but we use Q2

and Q4 for that in this paper. Thus, an online operand is the

result of an offline division computed in a Q2 or Q4 divider.

Since a division has two operands, we define dependency types

for online division as follows (a, b, c, d are offline operands.):

• Type-X: The dividend is online, but its divisor is offline.

We denote it by (a/b)/c where e = a/b is computed in

a generator and e/c is computed in a target divider.

• Type-D: The dividend is offline, but the divisor is online.

We denote it by a/(b/c) where e = b/c is computed in

a generator and a/e is computed in a target divider.

• Type-XD: Both the dividend and divisor are online. We

denote it by (a/b)/(c/d) where e = a/b and f = c/d
are computed in two generators and e/f is computed in

a target divider.

We also define the size (large, medium, small) of a 64-bit

unsigned number x as follows:

• Large: At least one of the eight MSBs is 1 (x ≥ 256).

• Medium: 224 ≤ x < 232.

• Small: x < 28.

NT05-4

AT03

QD44

QD42

QD24QD22

Q4

Q2

JB20 SA17

AN16

Normalized area

Normalized execution time

0.5

1.0

1.5

2 4 6 8 10 12

NT05-16

Fig. 5. Area vs. execution time for an offline division (Table IV). Both the
areas and execution times are normalized to the Q2 design.

A simulation set for Type-X consists of two divisions, e = a/b
and q = e/c. a, b, and c are randomly generated. However,

there are some trivial cases such as dividing a small dividend

by a large divisor (so the quotient is zero). To avoid trivial

cases, a is set to a large number (L), and b and c are set to

small numbers (S), which is denoted by (L/S)/S. Similarly,

we simulate L/(L/S) and L/(L/M) for Type-D. For Type-

XD, we simulate (L/S)/(L/M) and (L/S)/(L/L).
For each dependency type, we generated and ran 10,000

simulation sets, obtained the cycle count of each set, and

computed the sum of the execution times. Each offline division

is computed in a Q2 or Q4 divider (data generator). The

quotient of a generator is passed to a target divider computing

an online division. We start and stop counting the number of

cycles for each online division when the target divider receives

the first bit of the online operand and generates the last bit of

the quotient of the online division, respectively.

The execution of an online division is decomposed into four

computation stages as follows:

• Wait: When an online divider computes an online divi-

sion, it waits until a sufficient number of operand bits

are given (online delay). An offline divider waits until

the operands are fully given. This stage is the Wait stage.

• Speed up: When an integer divider receives leading 1’s

in both operands, it quickly fills up some of the quotient

bits with 0’s in Path 1 and switch to Path 2 from the next

cycle. This stage is the Speed-up stage and always takes

one cycle.

• Ineq. (not found) and Ineq. (found): When the online

dividers compute (15) and (16), they might or might

not be able to find quotient bits. The former and the

latter are denoted by Ineq. (found) and Ineq. (not found),

respectively.

2) Type-X Division: Fig. 6(a) shows a flowchart of the

Type-X division and Fig. 6(b) shows the execution times of

the dividers normalized to Q2 when the generator is a Q2

divider (i.e., the target divider receives two dividend bits every

cycle except the first cycle). The offline dividers spend a large

0.0

0.4

0.6

0.8

1.0

1.2

1.4

Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.2

0.0

0.4

0.6

0.8

1.0

1.2

1.4

Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.2

(b) (c)

Wait

Speed up

Ineq. (not found)

Ineq. (found)

(x1 / d1)

d2

(a)

q1

Gen.
x1 / d1

Target

divider

q1 / d2

x1 d1

d2

Fig. 6. (a) A flowchart of a Type-X division. The execution times of the
dividers for Type-X (L/S)/S division (normalized to Q2). (b) The generator
is a Q2 divider, (c) The generator is a Q4 divider.

amount of time in the Wait stage because they start the division

only when the operands are fully given.

Q2 is 4% faster than Q4, and QD22 and QD24 are 6%

and 4% faster than Q2, respectively. QD22 and QD24 spend

only one or two cycles in the Wait stage and move on to the

inequality stage, whereas the offline dividers spend almost 29

cycles in the Wait stage. Notice that the divisors of the online

divisions are offline, so the QD designs can fully utilize the

divisors from cycle 0. Thus, QD22 and QD24 spend the same

number of cycles for the divisions, but the clock period of

QD22 is shorter than QD24. As a result, QD22 is 2% faster

than QD24. For the same reason, QD42 is 8% faster than

QD44. Moreover, QD22 and QD24 obtain the quotient bits

most of the time because they try to find only two quotient

bits at a time. On the contrary, QD42 and QD44 obtain the

quotient bits only for about a half of the total cycles because

receiving two bits of d per cycle is not enough to obtain four

bits of q every cycle.

Fig. 6(c) shows the execution times when the generator is

a Q4 divider. Since four bits of the dividends are given to the

target divider every cycle, the offline dividers spend less time

in the Wait stage. However, QD22 and QD24 do not benefit

from receiving four bits of x every cycle because receiving two

bits of x every cycle was enough to find two quotient bits every

cycle. On the contrary, QD42 and QD44 outperform Q2 and

Q4 by 6% to 31% because the former can obtain four quotient

bits almost every cycle. In sum, QD22 and QD24 outperform

the others when the generator sends two bits to them every

cycle. However, if the generator sends four bits to them every

cycle, QD42 and QD44 benefits from that significantly and

outperform the others.

3) Type-D Division: Fig. 7(a) shows a flowchart of the

Type-D division and Fig. 7(b) shows the execution times of the

dividers for L/(L/M) when the generator is a Q2 divider. The

offline dividers still spend a long time in the Wait stage. On the

contrary, the online dividers wait only for one or two cycles

in the Wait stage. Similar to the Type-X division, QD22 and

QD24 find quotient bits almost every cycle. However, QD42

and QD44 cannot obtain quotient bits for almost 50% of the

clock cycles in the Inequality stage. This is again because

receiving two divisor bits per cycle from the generator is not

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

2.0

2.5

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

2.0

2.5

(b) (c)

Wait

Speed up

Ineq. (not found)

Ineq. (found)

(a)

q1

Gen.
x1 / d1

Target

divider

x2 / q1

x1 d1

x2

(x1 / d1)

x2

Fig. 7. (a) A flowchart of the Type-D division. The execution times of the
dividers for Type-D L/(L/M) division (normalized to Q2). (b) Generator:
Q2, (c) Generator: Q4.

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

2.0

2.5

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

2.0

2.5

(b) (c)(a)

q1

Gen.
x1 / d1

Target

divider

x2 / q1

x1 d1

x2

(x1 / d1)

x2

Wait

Speed up

Ineq. (not found)

Ineq. (found)

Fig. 8. (a) A flowchart of the Type-D division. The execution times of the
dividers for Type-D L/(L/S) division (normalized to Q2). (b) Generator:
Q2, (c) Generator: Q4.

enough to obtain four quotient bits every cycle.

On the other hand, the Q2 and Q4 dividers outperform

the others because the range of the quotient of L/(L/M) is

[224, 232], so Q2 spends 12 to 16 cycles and Q4 spends 6 to

8 cycles in the Inequality stage. Since they have much shorter

clock periods than the online dividers, the execution times of

the offline dividers are shorter than those of the online dividers.

Fig. 7(c) shows the execution times of the dividers for

L/(L/M) when the generator is a Q4 divider. As shown in

the figure, the execution time of QD44 goes down significantly

because QD44 can find four quotient bits almost every cycle.

However, the execution times of Q2 and Q4 also go down

because the generator sends four bits to them every cycle, so

the Q2 and Q4 dividers spend less time in the Wait stage.

Fig. 8(b) and (c) show the simulation results for Type-

D L/(L/S) division. The difference between L/(L/S) and

L/(L/M) is that the generator computing L/S in the former

spends more time than the one computing L/M in the latter.

Thus, the offline dividers should wait longer in the L/(L/S)
case, which is why the execution times in the Wait stage in

Fig. 8(b) and (c) occupy a significant portion of the total

execution times compared to Fig. 7. However, the range of

the quotient of L/(L/S) is [1, 216], so Q2 and Q4 spend less

time in the Inequality stage. On the contrary, the QD dividers

can still find some quotient bits while receiving the divisor

bits, so they outperform the Q2 divider by 24% to 35% in

Fig. 8(b). In Fig. 8(c), the generator finishes (L/S) in almost

16 cycles, so the offline dividers wait only for 16 cycles. As

a result, the execution times of Q2 and Q4 go down and are

comparable to those of the QD dividers.

4) Type-XD Division: There are two generators for the

operands in the Type-XD division. The generators start their

execution at cycle 0 and the target divider starts its execution

when it receives the first bit of its dividend or divisor.

Fig. 9(b) and (c) show the execution times for

(L/S)/(L/M) when the generators for (dividend, divisor) are

(Q2, Q2) and (Q2, Q4), respectively. In both cases, the QD

dividers outperform the Q2 divider by 13% to 30%. We find

that the number of maximally obtainable quotient bits in a

cycle in this simulation set is approximately two. Thus, QD22

and QD24 outperform QD42 and QD44 by 8% to 15%.

Fig. 9(d) and (e) show the execution times for

(L/S)/(L/M) when the generators for (dividend, divisor)

are (Q4, Q2) and (Q4, Q4), respectively. In Fig. 9(d), the

divisions computed in the target dividers are L/M , so the

target dividers need to compute about 36 quotient bits. Due to

this, the performance of Q2 and Q4 is comparable to that of

the QD dividers. In fact, the simulation in Fig. 9(d) is similar

to that in Fig. 7(b) because the divisor in the target divider

receives two bits. Although the dividend in the target divider

receives four bits in Fig. 9(d), the divisor is the bottleneck

in this case, so there is no big difference between Fig. 9(d)

and Fig. 7(b). On the other hand, Fig. 9(e) shows a pattern

slightly different from Fig. 7(c) because the dividend of a

target division also comes from a generator in Fig. 9(e). In

this case, QD44 shows the shortest execution time.

Fig. 10(b), (c), (d), and (e) show the execution times for

(L/S)/(L/L) when the data generators for (dividend, divisor)

are (Q2, Q2), (Q2, Q4), (Q4, Q2), and (Q4, Q4), respectively.

The target division is (L/S)/(L/L) = L/S and the divisor

L/L is computed in a few cycles, so this case is similar to

the Type-X division. Thus, Fig. 10(b) and (c) are similar to

Fig. 6(b). Similarly, Fig. 10(d) and (e) are similar to Fig. 6(c).

5) Summary: For online division, execution times of the

dividers are highly dependent on the magnitudes of the

operands, and how fast (bit rate) dependent operands receive

their bits from the senders. We summarize our observation of

the execution time trends as follows.

• Magnitude: Let lx and ld be the indices of the leading 1’s

of x and d, respectively. If lx and ld increase, the online

dividers would outperform the offline dividers. The earlier

the leading 1’s appear in x and d, the earlier the online

dividers can start the division.

• Bit rate: Let Nd be the average number of bits that

the online operands of a target divider receive from the

senders every cycle. If Nd increases, the offline dividers

would outperform the online dividers.

The execution time of an online division is also directly related

to the clock period of the target divider. Thus, it is very crucial

to minimize the clock periods of the online dividers.

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

2.0

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

2.0

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

2.0

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

2.0

(b) (c) (d) (e)

Wait

Speed up

Ineq. (not found)

Ineq. (found)

(a)

q1

Gen. 1
x1 / d1

Target divider
q1 / q2

x1 d1

q2

Gen. 2
x2 / d2

x2 d2

(x2 / d2)

(x1 / d1)

Fig. 9. (a) A flowchart of the Type-XD division. The execution times of the dividers for Type-XD (L/S)/(L/M) division (normalized to Q2). (Generator
for (L/S), Generator for (L/M)): (b) (Q2, Q2), (c) (Q2, Q4), (d) (Q4, Q2), (e) (Q4, Q4).

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

0.0
Q2 Q4 QD

22

QD

44

QD

42

QD

24

0.5

1.0

1.5

(b) (c) (d) (e)(a)

q1

Gen. 1
x1 / d1

Target divider
q1 / q2

x1 d1

q2

Gen. 2
x2 / d2

x2 d2

(x2 / d2)

(x1 / d1)

Fig. 10. (a) A flowchart of the Type-XD division. The execution times of the dividers for Type-XD (L/S)/(L/L) division (normalized to Q2). (Generator
for (L/S), Generator for (L/M)): (b) (Q2, Q2), (c) (Q2, Q4), (d) (Q4, Q2), (e) (Q4, Q4).

VI. CONCLUSION

In this paper, we proposed a dual-purpose integer division

algorithm for both offline and online division. The algorithm

uses interval analysis to find quotient digits from offline or

online operands. The algorithm uses the conventional binary

number system. The online dividers achieved shorter execution

time than the offline dividers for several online division cases

at the cost of more energy consumption and area. We analyzed

the characteristics of the dividers and found relationships

among the properties of the operands, dependency types, and

execution times from the simulation results.

ACKNOWLEDGMENT

This work was supported by the Defense Advanced Re-

search Projects Agency (DARPA) Young Faculty Award under

Grant D16AP00119.

REFERENCES

[1] J. Seo and D. H. Kim, “Dual-Purpose Hardware Algorithms and Archi-
tectures – Part 1: Floating-Point Division,” in Proc. IEEE Int. Symp. on
Computer Arithmetic, 2023.

[2] A. Nannarelli, “Performance/Power Space Exploration for Binary64
Division Units,” in IEEE Trans. on Computers, vol. 65, no. 5, May
2016, pp. 1671–1677.

[3] S. Amanollahi and G. Jaberipur, “Energy-Efficient VLSI Realization of
Binary64 Division with Redundant Number Systems,” in IEEE Trans.
on VLSI Systems, vol. 25, no. 3, Mar. 2017, pp. 954–961.

[4] J. D. Bruguera, “Low Latency Floating-Point Division and Square Root
Unit,” in IEEE Trans. on Computers, vol. 69, no. 2, Feb. 2020, pp.
274–287.

[5] F. Lyu, Y. Xia, Y. Chen, Y. Wang, Y. Luo et al., “High-Throughput Low-
Latency Pipelined Divider for Single-Precision Floating-Point Num-
bers,” in IEEE Trans. on VLSI Systems, vol. 30, no. 4, Apr. 2022, pp.
544–548.

[6] J. D. Bruguera, “Low-Latency and High-Bandwidth Pipelined Radix-64
Division and Square Root Unit,” in Proc. IEEE Int. Symp. on Computer
Arithmetic, 2022, pp. 10–17.

[7] K. Trivedi and M. Ercegovac, “On-Line Algorithms for Division and
Multiplication,” in IEEE Trans. on Computers, vol. C-26, no. 7, Jul.
1977, pp. 681–687.

[8] K. Trivedi, “Higher Radix On-Line Division,” in Proc. IEEE Int. Symp.
on Computer Arithmetic, 1978, pp. 164–174.

[9] O. Watanuki and M. Ercegovac, “Floating-Point On-Line Arithmetic:
Algorithms,” in Proc. IEEE Int. Symp. on Computer Arithmetic, 1981,
pp. 81–86.

[10] O. Watanuki and M. Ercegovac, “Floating-Point On-Line Arithmetic:
Error Analysis,” in Proc. IEEE Int. Symp. on Computer Arithmetic, 1981,
pp. 87–91.

[11] M. Ercegovac, “On-Line Arithmetic: An Overview,” in Real Time Signal
Processing VII: Proc. SPIE, vol. 495, 1984, pp. 86–93.

[12] P. K.-G. Tu and M. D. Ercegovac, “A Radix-4 On-Line Division
Algorithm,” in Proc. IEEE Int. Symp. on Computer Arithmetic, 1987,
pp. 181–187.

[13] A. F. Tenca, A. Shantilal, and M. Sinky, “A Radix-4 On-line Division
Design and Its Application to Networks of On-line Modules,” in
Proceedings of SPIE, vol. 5205, 2003, pp. 529–540.

[14] M. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementation. Kluwer Academic Publishers, 1994.

[15] N. Takagi, S. Kadowaki, and K. Takagi, “A Hardware Algorithm for
Integer Division,” in Proc. IEEE Int. Symp. on Computer Arithmetic,
2005, pp. 1–7.

